Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.

نویسندگان

  • Marion Najac
  • Indira M Raman
چکیده

Neurons in the cerebellar cortex, cerebellar nuclei, and inferior olive (IO) form a trisynaptic loop critical for motor learning. IO neurons excite Purkinje cells via climbing fibers and depress their parallel fiber inputs. Purkinje cells inhibit diverse cells in the cerebellar nuclei, including small GABAergic nucleo-olivary neurons that project to the IO. To investigate how these neurons integrate synaptic signals from Purkinje cells, we retrogradely labeled nucleo-olivary cells in the contralateral interpositus and lateral nuclei with cholera toxin subunit B-Alexa Fluor 488 and recorded their electrophysiological properties in cerebellar slices from weanling mice. Nucleo-olivary cells fired action potentials over a relatively narrow dynamic range (maximal rate, ∼ 70 spikes/s), unlike large cells that project to premotor areas (maximal rate, ∼ 400 spikes/s). GABA(A) receptor-mediated IPSCs evoked by electrical or optogenetic stimulation of Purkinje cells were more than 10-fold slower in nucleo-olivary cells (decay time, ∼ 25 ms) than in large cells (∼ 2 ms), and repetitive stimulation at 20-150 Hz evoked greatly summating IPSCs. Nucleo-olivary firing rates varied inversely with IPSP frequency, and the timing of Purkinje IPSPs and nucleo-olivary spikes was uncorrelated. These attributes contrast with large cells, whose brief IPSCs and rapid firing rates can permit well timed postinhibitory spiking. Thus, the intrinsic and synaptic properties of these two projection neurons from the cerebellar nuclei tailor them for differential integration and transmission of their Purkinje cell input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback control of Purkinje cell activity by the cerebello-olivary pathway.

The pathway from the deep cerebellar nuclei to the inferior olive, the source of the climbing fibre input to the cerebellum, inhibits olivary transmission. As climbing fibre activity can depress the background firing of the Purkinje cells, it was suggested that nucleo-olivary (N-O) inhibition is a negative feedback mechanism for regulating Purkinje cell excitability. This suggestion was investi...

متن کامل

Cerebellar Inhibitory Input to the Inferior Olive Decreases Electrical Coupling and Blocks Subthreshold Oscillations

GABAergic projection neurons in the cerebellar nuclei (CN) innervate the inferior olive (IO) that in turn is the source of climbing fibers targeting Purkinje neurons in the cerebellar cortex. Anatomical evidence suggests that CN synapses modulate electrical coupling between IO neurons. In vivo studies indicate that they are also involved in controlling synchrony and rhythmicity of IO neurons. H...

متن کامل

Oleuropein Attenuates Deltamethrin-induced Apoptosis in Rat Cerebellar Purkinje Neurons

Background: Deltamethrin (DM) is a synthetic pyrethroid insecticide that can elicit neurotoxicity, and lead to apoptosis. There is accumulating evidence that oleuropein (OE) has anti-apoptotic effect. This study aimed at determining the DM toxicity and anti-apoptotic effect of OE pretreatment in cerebellar Purkinje neurons. Materials and Methods: Rats were randomly divided into four groups a...

متن کامل

Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies

To study the olivary input to the cerebellar nuclei (CN) we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2) in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC) and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO) with a blue laser (single pulse, 10-50 ms duration). Peri-stimulus histograms (PSTHs...

متن کامل

Changes in complex spike activity during classical conditioning

The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or "Purkinje cell CRs" to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2015